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ABSTRACT 

 

Understanding the adoption process of a new product and modeling the resulting diffusion 

pattern over time has been of great interest to both academicians and practitioners for the 

past 50 years. The keen interest in modeling diffusion of innovations would continue to grow 

in the new digital economy also, perhaps more vigorously given the increased speed with 

which information spreads on social media.  

 

We are presenting a research manuscript that has three purposes. The first is to give a treatise 

on the interesting model developments that have happened in modeling diffusion of 

innovations. Noting that diffusion modeling is one of the strong theory-based quantitative 

investigations that has evolved in the marketing literature, we explain how theoretical 

modeling by various researchers has advanced the knowledge on new product sales growth.  

 

Second, given that no theoretical model can claim to be valid unless it is supported strongly 

by empirical data, we discuss in detail the development of estimation procedures as they 

pertain to offering validation support to the diffusion of innovation models. From the 

application perspective of diffusion models, we also look at the forecasting implications and 

normative developments, e.g., optimal marketing mix policies. 

 

Third, acknowledging that there have been comprehensive review papers in the diffusion of 

innovations area, including: Mahajan and Muller (1979), Mahajan and Wind (1986), Mahajan, 

Muller and Bass (1990), Mahajan, Muller and Bass (1993), Mahajan, Muller and Wind (2000), 

and the latest one being Meade and Islam (2006). Our objective is not to just do another 

review article on diffusion models but rather concentrate on emerging areas such as: 

multigeneration diffusion models, social media related product diffusion, and repeat 

purchase behavior, to name a few. Our focus is on building strong analytical models with 

theoretical insights and in-depth empirical analysis.  

 

Our work is likely to be more useful for the PhD students and researchers interested in new 

product adoption and diffusion. We focus our discussion on the following three areas: model 

formulations, estimation methods and normative implications. 
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INTRODUCTION 

 

Rogers (1983) conducted several field experiments and found that a new product was not 

getting adopted immediately by all but rather gradually, in a systematic way. He also found 

that the adoption process was largely influenced by word of mouth (WOM) spreading from 

adopters to potential adopters. Rogers theorized that a new product diffuses through five 

groups of users namely: innovators, early adopters, early majority, late majority and laggards, 

in that order. Of the 5 groups, the innovator group, Rogers argued, adopted the product first 

by looking at how the product was useful to them and its role in their lifestyle. Then they 

make a decision of whether to adopt. Once they decide to adopt the product, the other four 

groups are influenced by WOM and chose to gradually adopt over time.  

 

Frank M Bass (1969) gave a mathematical structure to the Roger’s findings after collapsing 

the last four groups into one group and calling it “imitator group”. Thus, Bass took the Roger’s 

finding to mean that a small fraction of a market adopted a new product without getting 

influenced by WOM and that the rest of the market adopt it after getting enough information 

through WOM. He called the two groups innovators and imitators respectively. He used this 

theory to develop a mathematical expression for the adoption of a new product by an 

individual and derived a diffusion model that described the periodic sales growth of the 

product at the market level. He further offered strong support to his model through fitting it 

on eleven new consumer durable goods’ sales growth data.  

 

The rather strong theoretical foundation and empirical support helped the Bass (1969) model 

to set off an unprecedented research movement in Marketing and elsewhere. This resulted 

in the Bass model of the 1969 article, which was published in Management Science, getting 

the maximum ever citation count in Management Science. Till today, it holds that honor.  
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 1: Diffusion Models 

 

Bass (1969) asked how a given individual at time t would go about deciding to adopt a new 

product introduced at time 0. Bass took the Rogers’ main finding on “innovators and 

imitators” dichotomy in the marketplace and transformed that to mean that the individual at 

time t would be influenced partly by innovative thinking and partly by WOM i.e. imitating 

tendency. He captured the individual’s new product adoption decision in a hazard framework 

as follows. 

 
𝑓(𝑡)

1 − 𝐹(𝑡)
= 𝑝 + 𝑞𝐹(𝑡) (1) 

 

where f(t) is the probability that the individual would adopt the new product at time t, and 

[1-F(t)] is the probability he had not adopted the product until time t. Thus, if we take t is the 

random variable of “time to adoption”, f(t) is the pdf (Probability Density Function) and F(t) 

is the cdf (Cumulative Distribution Function). The left-hand side function is thus the hazard 

that an individual would adopt a new product at time t given that she has not adopted that 

product until time t. The right-hand side has two components: a) “q F(t)” captures the WOM 

influence of previous adopters on the individual, where q is the parameter that captures the 

strength of the WOM influence generated by F(t), b) the parameter p captures all those non-

WOM forces influencing the individual’s decision. These include advertising, salesforce efforts 

(especially in a B2B context), brochures and information on the website. Bass referred p and 

q as the coefficients of innovation and imitation respectively.  

 

Recognizing that f(t) is actually dF(t)/dt, the differential equation (1) can be solved to yield: 

 

 𝐹(𝑡) =  
1 − exp [−(𝑝 + 𝑞)𝑡]

1 +
𝑞
𝑝 exp [−(𝑝 + 𝑞)𝑡]

 (2) 

This is the probability an individual might have adopted by time t. The pdf is obtained by 

differentiating F(t) with respect to t, resulting in:  
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𝒇(𝒕) =
[
(𝒑 + 𝒒)𝟐

𝒑 ]𝒆−(𝒑+𝒒)𝒕

[𝟏 +
𝒒
𝒑

𝒆−(𝒑+𝒒)𝒕]𝟐
 (3) 

 

Multiplying equation [2] by market potential, m, we get: 

 

In equation [4], m is the market potential i.e. the total number of adopters in the target 

market, and CS(t) is the cumulative number of adopters until time t. 1  Interestingly, Mansfield 

(1961) proposed a model that was same as equation [1] but in deriving a closed form solution, 

Mansfield made an assumption that yielded a different model (i.e. a model without p) which 

became a simple logistic regression equation.  

The sales growth pattern of a new product is shown in Figure 1: 

 

In Figure 1, T* is the time to peak sales. To find T*, differentiating f(t) where f(t) is given in 

equation (3), and setting the result equal to zero will yield: 

 

                                                        
1 For a durable good like a smart phone or a laptop, the number of adopters would equal the sales of the product because 

an adopter would buy only one unit in general. This is true of adopting a service product like signing up for a club, cell phone 
services, Facebook or WhatsApp. Hence, for durable goods and services, we can say that CS(t) represents Cumulative Sales 
up to t.   
 

 

 

𝐶𝑆(𝑡) = 𝑚 
1 − exp [−(𝑝 + 𝑞)𝑡]

1 +
𝑞
𝑝 exp [−(𝑝 + 𝑞)𝑡]

 
(4) 
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𝑇∗ =
1

𝑝 + 𝑞
ln (

𝑞

𝑝
) (5) 

𝑆(𝑇∗) =
𝑚(𝑝 + 𝑞)2

4𝑞
 

 

 

Substituting T* in equation (2), we get: 

𝐹(𝑇∗) =
(𝑞 − 𝑝)

2𝑞
 

And cumulative sales will be: 

𝐶𝑆(𝑇∗) = 𝑚𝐹(𝑇∗) =
𝑚(𝑞 − 𝑝)

2𝑞
=

𝑚

2
(1 −

𝑝

𝑞
) 

Given that p is normally smaller than q, cumulative sales can be approximated as,  

𝐶𝑆(𝑇∗) =
𝑚

2
 

Therefore, cumulative peak sales of a new product will be half the total market potential.  

 

Noting that S(t) = m f(t) and CS(t) = m F(t), where m is the market potential, equation [1] 

becomes:  

 𝑆(𝑡) = 𝑚𝑝 + (𝑞 − 𝑝)𝐶𝑆(𝑡) − (𝑞/𝑚)𝐶𝑆2(𝑡) (6) 

 

Equation [5] was used by Bass (1969) to estimate the model with sales data in eleven 

consumer durables, where he found a high R-square indicating an excellent fit of the model) 

to the annual sales data2. RCA, the leading Color TV manufacturer of those times, and WSJ 

mentioned about the usefulness of the Bass model for forecasting purposes. 

 

2.1 Model Extensions: Role of Marketing Mix variables  

After the rather very successful empirical demonstration of the diffusion model by Bass in 

1969 and acknowledgement of the same by the industry, there was surprisingly no follow up 

work for almost 6 years. Robinson and Lakhani (1975) of Kodak used the Bass model to derive 

optimal pricing policies for their new cameras. An interesting thing is that the original Bass 

model (1969) doesn’t have price in their function, and so Robinson and Lakhani (1975) 

                                                        
2 Equation [4], which is a better equation to use in estimation, was introduced 15 years later by Srinivasan and 
Mason (1986). 
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inserted the price in a rather ad-hoc way in the Bass model equation [1] and proceeded to 

derive the optimal dynamic pricing policy for a new camera. We use the phrase ad-hoc for 

the reason that the authors didn’t test the model with empirical data. Later, other researchers 

carried out empirical analysis but couldn’t find support for this model3.  

 

In fact, in the two decades following the publication of the Bass model, only a few research 

articles offered empirically supported models while investigating the role of marketing mix 

variables in the Bass model. Almost all of the models followed the Robinson and Lakhani 

(1975) approach in that their main focus was on deriving optimal policies without empirically 

justifying them with empirical data4.  

 

Bass (1980) proposed that the marginal cost decreasing over time with sales volume would 

encourage firms to decrease the price accordingly, and used that principle to infer the role 

of price. Horsky and Simon (1983) incorporate advertising in the Bass model by making the 

coefficient of innovation (p) a function of advertising. They tested their model empirically as 

well as derived the optimal advertising policy.  

 

 Horsky (1990) proposed that income-wage distribution would affect the market potential 

while Kalish (1985) used the reservation price framework to explain the role of price on 

adoption. Although the theoretical frameworks used in these two models are plausible, the 

empirical exercise carried out are difficult to replicate.  

 

Jain and Rao (1990) focused on empirically testing out if price should be added to the Bass 

model to affect the market potential or the rate of adoption.  

 

                                                        
3 Although one could propose a model that logically explains a marketing process, providing good empirical 
support for the model is important to justify the mechanism underlying the model because there could be 
many such competing models one could come up with. In such a case, strong empirical support for a model 
would provide the researchers and the managers enough confidence in the model and in the mechanism 
proposed in the model. 
4 Later we will show how optimal policies depend critically on the model one uses to derive those policies 
although all models try to explain the same marketing process.   
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Two research articles had a more comprehensive approach to incorporate marketing mix 

variables in the Bass diffusion model: Bass, Krishnan and Jain (1994) and Bass, Jain and 

Krishnan (2000).  

 

Bass, Krishnan and Jan (1994) turned the puzzle upside down and asked: Why does the Bass 

model fit without decision variables? Analyzing the unique structure of the Bass model, the 

researchers found that the only explanatory variable, i.e. t in the Bass model (see equation 

[3]) was somehow capturing also the impact of the decision variables such as price and 

advertising over time. This is a classic case of the widely known statistical principle that if 

omitted variables are correlated with the included variables the model would provide a good 

fit to the data even in the absence of those omitted variables. This is of course good news for 

forecasting purposes because the forecaster now doesn’t have to worry about the other 

variables but guess the values for the three parameters Bass model, namely, {p, q, m} and use 

equation [4] and forecast the sales growth into future. However, for controlling the sales 

growth process, managers need a modified Bass model that is theoretically sound and 

empirically proven. It was provided by Bass, Krishnan and Jain (1994). The model is given 

below.  

 
𝑓(𝑡)

1 − 𝐹(𝑡)
= [𝑝 + 𝑞𝐹(𝑡)] 𝑥(𝑡) (7) 

where x(t) was called marketing efforts at t (or current marketing efforts), which was 

formulated as:  

 𝑥(𝑡) = 1 + 𝛽1

1

Pr (𝑡)

𝑑𝑃𝑟(𝑡)

𝑑𝑡
+ 𝛽2

1

adv (𝑡)

𝑑 𝑎𝑑𝑣(𝑡)

𝑑𝑡
 (8) 

where 
1

Pr (𝑡)

𝑑𝑃𝑟(𝑡)

𝑑𝑡
 is the percentage change in price at time t, and 

1

adv (𝑡)

𝑑 𝑎𝑑𝑣(𝑡)

𝑑𝑡
 percentage 

change in advertising at time t, and the new parameters {𝛽1, 𝛽2} are respectively the impact 

of those price and advertising variables. This was called “Generalized Bass Model” because 

when price and adv change at more or less a constant rate over time, these two factors 

would be a constant, yielding x(t) to be some constant. In such a case, equation [6] would 

become observationally equal to the Bass model [1] 5.  

                                                        
5 In order to accommodate the fact that advertising is likely to have a carry-over effect implying that an 

occasional drop in advertising might not mean negative influence on sales the variable 
𝑑 𝑎𝑑𝑣(𝑡)

𝑑𝑡
 in expression [7] 
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Solving the differential equation [7] with [8], we get: 

 𝐹(𝑡) =  
1 − exp [−(𝑝 + 𝑞)𝑋(𝑡)]

1 +
𝑞
𝑝 exp [−(𝑝 + 𝑞)𝑋(𝑡)]

 (9) 

where,  

 𝑋(𝑡) = 𝑡 + 𝛽1𝐿𝑛
𝑃𝑟(𝑡)

𝑃𝑟(0)
+ 𝛽2

𝑎𝑑𝑣(𝑡)

𝑎𝑑𝑣(0)
 (10) 

GBM has found wide support in the academia thanks to its theoretical appeal on explaining 

why the Bass model is so successful without including any decision variables.  

 

Bass, Jain and Krishnan (2000) proposed another interesting framework that stems from the 

hazard model literature. They claim that the Bass (1969) model represents the basic hazard 

process while the marketing variables act on that basic process like in a proportional hazard 

model. This is as given below. 

 ℎ(𝑡 |𝑥(𝑡)) = ℎ(𝑡) exp [𝛽1Pr (t) + 𝛽2adv (t)] (11) 

 

where h(t) on the righthand side is the base level hazard function as given by Bass model 

(equation [1]) and h(t|x(t)) on the left hand side is the hazard that includes the impact of 

price and adv.  This model has proved to be more versatile than GBM, especially in 

estimating the role of decision variables on the diffusion.  

 

 

 

 

 

 

 

 

 

                                                        
was devised to have the lower bound of zero. This of course can be modified to suit different conditions of 
advertising expenditure policies. 
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A list of models proposed in the literature with empirical support and normative 

implications is presented in Table 1.  

Table 1 
Diffusion of Innovations: Model Extensions  
 

Research Modeling Approach Specific Formulation  

Robinson and Lakhani (1975) Experience Curve and Price- 
Normative Model 

Price affects the rate of 
adoption multiplicatively. 

Bass (1980) Experience Curve and 
Reservation Price –Empirical 
Analysis 

Price acts multiplicatively 
on the rate of adoption.  

Dolan and Jeuland (1981) Price – Normative Model Price has a multiplicative 
effect on the adoption 
rate.  

Bass and Bultez (1982) Price – Normative Model and 
Empirical Analysis 

Price and rate of 
adoption have a 
multiplicative 
relationship.  

Horsky and Simon (1983) Advertising – Normative 
Model and Empirical Analysis 

Advertising effects the 
coefficient of innovation 

Tang and Thomson (1983) Advertising – Normative 
Model 

Advertising affects the 
diffusion coefficients 

Kalish (1983) Price – Normative Model Price affects the market 
potential and the rate of 
adoption multiplicatively 

Kalish (1985) Price and Advertising – 
Normative Model 

Price affects the market 
potential, the rate of 
adoption is controlled by 
advertising.  

Simon and Sebastian (1987) Advertising – Empirical 
Analysis 

Advertising effects the 
coefficient of imitation 

Horsky (1990) Income-Wage Distribution – 
Normative Model and 
Empirical Analysis 

Existence of income-
price effect on market 
potential is hypothetical 
and tested.  

Jain and Rao (1990) Price – Empirical Analysis Price effects market 
potential and rate of 
adoption 

Jones and Ritz (1991) Distribution – Empirical 
Analysis 

Market potential is a 
function of distribution 
growth.  

Krishnan, Bass and Jain 
(1994) 

Price and Advertising – 
Empirical Analysis 

Accelerated Hazard 
Model Formulation 

Krishnan, Jain and Bass 
(1999) 

Price and Advertising – 
Normative Model 

Advertising and price 
affect rate of adoption 
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Bass, Jain and Krishnan 
(2000) 

Price and Advertising – 
Empirical Analysis 

Proportional Hazard 
Model Formulation 

Danaher, Hardie and Putsis 
(2001) 

Price – Empirical Analysis Proportional Hazard 
Framework 

Krishnan and Jain (2006) Advertising – Normative 
Model 

Advertising affects rate 
of adoption 

 
 

 

2.2 Modeling other aspects 

There are many other aspects that are of interest to academicians and practitioners as well 

concerning a new product. We list a few of them here first and take up for discussion one by 

one to explain how researchers handle them.  

 

Micro-modelling Adoption  

Although Bass model and its extensions were found to be successful and useful in describing 

the sales growth process of a new durable, it is interesting that they don’t describe the 

adoption of a new product at an individual level. Bass model is actually founded on the 

individual level adoption process but by assuming that all individuals are the same, the 

individual level differences get washed out by the aggregate model. In other words, the 

aggregate model ignores the rich information contained in the differences among 

individuals with respect to how they view a given new product. This is a little troubling 

because we don’t set to gain insights that could answer questions such as “are there 

individuals who are more risk averse than others so a manager could approach them with a 

different strategy?”  

 

In order to address this critical issue Chatterjee and Eliashberg (1990) advanced an 

interesting model that goes to the heart of the individual’s decision regarding adopting a 

new product. They start with a utility model for an individual that builds on how far the 

information gathered by the individual affects his perception of the product’s expected 

performance, and augment that utility with a price function. The individual is modeled to 

update his utility in a Bayesian manner as more and more information bits come to him, and 

upon reaching a threshold the individual is said to adopt the product. There is unobserved 

stochasticity in the information process, represented by Weiner process, and this creates 
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the heterogeneity among the individuals. This leads to a nicely structured individual-level 

adoption model, which when aggregated gives Bass model under certain conditions. The 

authors did a pilot study with Wharton MBA students to demonstrate how their model 

could be used and estimated, leading to rich insights that could not be obtained from using 

aggregate models. 

 

Diffusion Models with Repeat Purchase 
 
Even though Bass acknowledges that his model is concerned with initial purchases only, the 

Bass Model is frequently applied to fit sales data that counts both initial purchases and 

repeat purchases. Such applications are reasonable when repeat purchases are infrequent 

or negligible, which might be the case for durable products during the early stages of 

product sales.  

 

For products that have frequent upgrades or multiple versions, repeat purchases can 

constitute a significant proportion of sales even in the early stages of product diffusion, thus 

limiting the application of the Bass Model. When significant repeat purchases exist, the 

fitting and forecasting performance of the Bass Model may degrade, particularly when the 

sales trend begins to assume an asymmetrical shape after the peak point of diffusion. Even 

if the model fits and predicts well in some situations despite the existence of considerable 

repeat purchases, the parameter estimates will be different from those obtained using only 

initial purchases data.  

 

In the prior literature, researchers have proposed model extensions to account for repeat 

product purchases made to replace existing product units or for adopting multiple product 

units. Olson and Choi (1985) propose a model assuming that sales comprise only adoptions 

and replacements, and that the replacement hazard function follows the Rayleigh 

distribution (Papoulis and Pillai 2002). The Olson-Choi Model is developed for cases in which 

the number of products in use is available.  

 

Kamakura and Balasubramanian (1987) propose a similar model that generates long-term 

forecasts by incorporating the adoption and replacement components of sales. Benefiting 
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from a more flexible hazard function to capture replacement purchases, their model is 

applicable with or without data for replacement sales. Their model uses information from 

similar products when data for replacement purchases is not available. Steffens and 

Balasubramanian (1998) further advance the modeling of replacement sales by allowing the 

distribution of the service life of replaced products to change over time.  

 

Focusing on the PC processor industry, Gordon (2009) introduces a dynamic structural 

model that explicitly considers product replacement decisions under uncertain future 

product quality and price. Gordon’s model concentrates specifically on product 

replacements due to obsolescence as a result of product upgrade releases. The model 

requires highly specific data to function as it uses a composite dataset including sales, 

ownership, price, and product quality. Due to data limitations, Gordon’s model does not 

consider multi-unit ownership purchases. 

 

The aforementioned models have their focus on adoptions and replacement purchases. 

There are other models from the prior literature that have considered other components of 

sales, in particular multi-unit ownership purchases, in addition to adoptions and 

replacements. Dodson and Muller (1978) propose a model that captures the type of 

asymmetric sales trend illustrated by the solid curve in Figure 2 without decomposing sales 

into multiple components. The market they consider is composed of three groups, i.e., 

those who are not aware of the product, those who are aware of the product but have not 

made a purchase, and those who have purchased the product. Although the portrayed 

interaction between adopters and non-adopters is insightful, their model cannot be 

operationalized if the data for the different market divisions is unattainable. 

 

Figure 2. Sales vs. Adoptions 

 

 

 

 

 

Sales (including initial and repeat purchases) 

Adoptions (initial purchases only) 
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Based on econometric and simulation models, Bayus, Hong, and Labe (1989) incorporate 

first time sales, replacement sales, additional-unit sales, and institutional sales into their 

analysis of color television set sales. As stated by Steffens (2003), Bayus et al.’s model is 

developed to perform well over short terms. 

 

Steffens (2003) presents a model for sales resulting from multi-unit ownership purchases 

based on the Bass Model. His model differs from Bayus et al.’s in that it imposes a 

saturation level on multi-unit ownerships, which makes the model applicable for longer time 

frames. 

 

Researchers have also developed models for repeat purchases of products for a specific 

industry. For instance, Lilien, Rao, and Kalish (1981) propose a highly specialized model to 

project sales of prescription drugs as a function of a focal pharmaceutical company’s own 

detailing effect, competitors’ detailing effect, and word of mouth. In a subsequent study, 

Rao and Yamada (1988) provide further empirical support for the model by Lilien, Rao, and 

Kalish, then propose an alternative method for developing priors for the new drug’s 

parameters, and  demonstrate how the parameters can be updated after sales data 

becomes available. Because Lilien, Rao, and Kalish’s and Rao and Yamada’s models are 

specifically designed for prescription drugs, they cannot be used to predict sales of general 

product categories.  

 

A detailed review of the literature suggests that there is a need for a comprehensive model 

that can be fit to aggregate sales data that records both initial purchases and repeat 

purchases including both replacements and multi-unit ownerships.  

 

Jiang, Aslan and Jain (2019) proposed a model termed as the Generalized Diffusion Model 

with Repeat Purchases (GDMR). The development of this model is based on a branch of 

mathematics named fractional calculus. Specifically, the model generalizes the fundamental 

differential equation governing the Bass Model, and employs a non-integer integral 

operator with flexible order, thereby rendering the Bass Model a special case of the 

extended model. The GDMR adopts an approach that is different from those in the prior 
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literature in that it captures the sales growth rate using a non-integer order integral 

equation, rather than an integer-order differential equation as used in the prior literature.  

 

Multi-Generation Diffusion of Innovations Models 

Technological advances fuel the development of new products and services. Examples are 

abundant. Decades ago, black-and-white TV was replaced by color TV, which is now ceding 

market share to HDTV. Even within the HDTV category, newer models are continuing to 

emerge, with the most recent variety 3D-capable, due to even more technologies. In the 

cellular phone market, the earliest generation was only equipped with basic calling features, 

the following generation enhanced to include cameras, media players, etc., while the 

newest generation, called smart phones, allow users to surf the Web, and run more 

sophisticated applications. The same phenomenon also exists in the software market, where 

vendors keep releasing new versions to meet users’ ever-increasing appetite for 

functionalities and take advantage of improvements in hardware technologies. The 

Microsoft Windows and Office lines of products are two well-known examples, with new 

version typically introduced every few years.  

 

The diffusion of successive product generations has been well studied in the prior literature. 

Most of the existing multigeneration diffusion models are inspired by the seminal Bass 

model (Bass 1969). Among them, the model proposed by Norton and Bass (1987) (NB model 

for short) is often credited as the pioneering work in describing multigenerational diffusion. 

The NB model assumes that each generation has its own market potential and market 

penetration process, and adopters of earlier generations can shift to newer generations. 

After Norton and Bass, several other notable multigeneration diffusion models have been 

proposed. Speece and MacLachlan (1995) extend the NB model to incorporate the influence 

of pricing and test it with multigenerational data for fluid milk packaging technologies. 

Mahajan and Miller (1996) develop a model that captures the number of systems-in-use for 

each generation and use it to study the optimal market entry timing for successive 

generations. Jun and Park (1999) combine the diffusion effects and choice effects and 

propose two integrated models: the Type 1 model distinguishes first-purchased demand 

and upgrade demand while the Type 2 model does not. Kim et al. (2000) propose a dynamic 

market growth model that captures not only the diffusion of multiple generations within the 
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same product category, but also the complementarity and competition present by related 

product categories. Danaher et al. (2001) develop a two-generation model that includes 

both first-time sales and periodic renewals. By selecting appropriate adoption time 

distributions, their model can also incorporate the impact of market mix variables. More 

recently, Jiang (2010) proposes a simple two-generation model to analyze the optimal free 

offer policy for successive software versions.  

 

Despite the progress made in the last two decades, a review of the literature reveals that 

the NB model remains the most tested and extended multigeneration diffusion model to 

date. We believe that the desirable mathematical properties (e.g., offering closed-form 

expressions, parsimonious, and continuous-time based) of the model plays a key role 

behind its popularity. However, the NB model is not applicable to all business scenarios. This 

is primarily because when counting the number of adopters who substitute an old 

generation with a new generation, the NB model does not differentiate those who have 

already adopted an earlier generation and those who are first-time adopters of any 

generation. In their study, Norton and Bass do acknowledge the existence of two different 

types of substitutions but admit that their model does not differentiate them (Norton and 

Bass 1987, p. 1074). Without such differentiation, the NB model cannot be used to estimate 

the number of cross-generation repeat purchases, nor can it help forecast future demand or 

project revenue for certain business scenarios (e.g., when revenue is generated through 

both product sale and after-sale service). Jiang and Jain (2010) propose a Generalized 

Norton-Bass (GNB) model that overcomes this limitation while retaining the desirable 

mathematical properties of the NB model. As we will demonstrate later, the proposed 

model offers greater flexibility in parameter estimation, forecasting, and revenue projection 

for a wider range of scenarios.  

A couple of other areas that need more attention are a) multinational diffusion models b) 

stochastic diffusion models and c) successive new product generations models. We 

summarize the research work in these areas in Tables (2), (3) and (4), respectively. 

Researchers interested in these areas can build on the work highlighted in the respective 

tables.  
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Table 2: Multinational Diffusion Models 

Research Article Focus 

Gatignon, Eliashberg and Robertson (1989) Modeling Multinational Diffusion Patterns  

Takada and Jain (1991) Cross-National Analysis of Diffusion of 

Consumer Variables in Pacific Rim Countries 

DeKimpe, Parker and Sarvary (1998) Estimation of International Diffusion 

Models 

Eliashberg and Helson (1996) Modeling Lead-lag Effects in Global 

Markets 

Jain and Maesincee (1997) Lead-lag Time Effects on Global Product 

Diffusion 

DeKimpe, Parker and Sarvary (2000) Multimarket and Global Diffusion 

Talukdar, Sudhir and Ainslie (2002) Investigating New Product Diffusion Across 

Products and Countries 

Kuman and Krishnan (2002) Multinational Diffusion Models  

 

Table 3: Stochastic Diffusion Models 

Research Article Focus 

Eliashberg and Chatterjee (1986) Stochastic Issues in Innovation Diffusion 

Models 

Boker (1987) A Stochastic First Purchase Diffusion Model 

Niu (2002) A Stochastic Formulation of the Bass Model 

of New-Product Diffusion 

Niu (2006) A Piecewise-Diffusion of New-Product 

Demands 

Raman and Jain (2010) A Stochastic New Product Growth Model  
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Table 4: Results of Successive New Product Generations Research 

Research Studies Research Focus Product/Service Analyzed 

(Examples) 

Wilson and Norton (1989) Optimal entry timing for a 

line extension of a new 

product 

Publishing firm’s decision on 

introducing hard cover and 

paperback versions 

Moorthy and Png (1992) Sequential vs. Simultaneous 

introduction of new product 

extensions 

a. IBM PS/1, PS/2 Game 

Computer 

b. Minolta single lens 

reflex cameras 

c. Volvo 6-cyllinder 760 

and 4-cyllinder 740 

models  

Mahajan and Muller (1996) Optimal timing of 

successive generations of 

technological innovations 

d. Four successive 

generations of IBM 

mainframe 

computers  

Morgan, Morgan and 

Moore (2001) 

Quality and Time to Market 

Trade-offs Made for 

Multiple Product 

Generation Launches 

Auto, medical devices, 

cellular phones and 

integrated circuit chips 

Prasad, Bronnenberg and 

Mahajan (2004) 

Timing strategies for new 

product versions through 

multiple channels 

Timing of video release after 

a theatrical release of a 

movie 

Krankel, Duenyas and 

Kapuscinski (2006) 

Successive Product 

Introductions Timings under 

Demand Diffusion and 

Technology Improvements 

IBM’s mainframe computer 

Mehra, Seidmann and 

Mojumder (2014) 

Optimal upgrade intervals 

for successive software 

versions 

Product lifecycle 

management of packaged 

software 

Jiang, Qu and Jain (2019) Optimal market entry 

timing for successive 

generations of technological 

innovations  

Technology products (e.g. 

computers, Microsoft Office 

365, software licenses) 
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3: Estimation Methods 

However logically correct a theory is, the world would not accept it wholeheartedly unless it 

gets empirical support. This is very much true for a marketing model like the Bass model 

because of its practical application in business.  Empirical support means that a proposed 

theoretical model is able to explain the underlying real phenomenon happening in the 

marketplace. In order to do that, we first gather data of the phenomenon from the real 

world, and statistically see if the proposed model “fits” with the data. We do the empirical 

test with data sets from multiple categories. In this chapter, we will analyze the various 

statistical procedures proposed in the literature to empirically test the Bass model and a few 

other extended models.  

 

3.1 OLS (Ordinary Least Squares) 

Bass (1969) proposed the fundamental diffusion model in a differential and solved the 

resulting differential equation to get a closed form expression for the Sales in time domain. 

However, for empirical testing he chose to use equation [1] and used Ordinary Least 

Squares (OLS) method after converting equation [1] to a linear model as follows.   

 

 
𝑓(𝑡)

1 − 𝐹(𝑡)
= 𝑝 + 𝑞𝐹(𝑡) 

  𝑆(𝑡) = 𝑚 𝑓(𝑡) = 𝑚 [1 − 𝐹(𝑡)][𝑝 + 𝑞𝐹(𝑡)] 

 𝑆(𝑡) = 𝑚𝑝 + (𝑞 − 𝑝)𝐶𝑆(𝑡) − (𝑞/𝑚) 𝐶𝑆2(𝑡) 

 

Note that in equation [9], CS(t) is cumulative sales at t and is m F(t), while sales is S(t) which 

is m f(t). It is easy to see that expression [9] is a linear equation where the dependent 

variable is S(t) and the independent variable is CS(t) and that the intercept is “m p” and the 

two slope coefficients are “q-p” and “-q/m”.  

 

𝑺(𝒕) = 𝜶 + 𝜷𝑪𝑺(𝒕) + 𝜸𝑪𝑺𝟐(𝒕) 

Where 𝜶 = 𝒎𝒑, 𝜷 = 𝒒 − 𝒑 𝒂𝒏𝒅 𝜸 = −𝒒/𝒎 

Solving 𝜶, 𝜷 𝒂𝒏𝒅 𝜸 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒑, 𝒒 𝒂𝒏𝒅 𝒎 

𝒎 =
−𝜷 ± √𝜷𝟐 − 𝟒𝜶𝜸

𝟐𝜸
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𝒒 = −𝜸𝒎 

𝒂𝒏𝒅 𝒑 =
𝜶

𝒎
 

 

Bass fitted this linear model on 11 new products’ sales data and found excellent fit. By using 

sales data of 11 new products to offer empirical support for his model, Bass (1969) showed 

the versatility of the proposed model to track sales growth of different new products and 

the robustness of the model. Note that OLS was not, as researchers later showed, a good 

estimation technique for the inherently non-linear Bass model and yet the fit was excellent, 

and the parameter estimates had plausible values with expected signs. This further 

demonstrated the flexibility and robustness of the Bass model.  

 

3.2 NLS Estimation  

In their 1986 paper, Srinivasan and Mason (SM) offered an elegant non-linear regression to 

estimate the Bass model. The non-linear least squares (NLS) method used the closed form 

solution of the Bass model (equations [2] and [4]) i.e. the sales in time domain as follows. 

The equations are reproduced here for convenience. 

𝑆(𝑡 − 1, 𝑡) = 𝐶𝑆(𝑡) − 𝐶𝑆(𝑡 − 1) 

                                          where,  

𝐶𝑆(𝑡) = 𝑚 
1 − exp [−(𝑝 + 𝑞)𝑡]

1 +
𝑞
𝑝 exp [−(𝑝 + 𝑞)𝑡]

 

The NLS method showed remarkable improvement in the fit and the parameter estimates 

(less standard error). Most importantly, it enabled much better forecasting ability with the 

Bass model, which we will explain now.  

 

Jain and Rao proposed the following non-linear formulation of the Bass model 

𝑆(𝑡 − 1, 𝑡) = (𝑚 − 𝐶𝑆(𝑡 − 1))
[𝐶𝑆(𝑡) − 𝐶𝑆(𝑡 − 1)]

[1 − 𝐶𝑆(𝑡 − 1)]
 

Where CS(t) is given in equation (4). NLS method was used to estimate the three model 

parameters, p, q and m.  
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A model’s empirical performance depends on how cleverly it uses the information 

contained in the data to estimate its parameters. In that context, Jain and Rao (1990) model 

outperforms many other models. It also uses NLS but in a much more clever way and hence 

yields better estimates.  

 

3.3 Bias in Estimates 

Van den Bulte and Lilien (1997) embarked on a rather unique research. They tested if the 

Bass model parameters estimated from data suffered from any systematic bias induced by 

the number of data points used in the data set. They used NLS-SM estimation method and 

used 11 real data sets and many simulated data sets to show that as the number of data 

points used for estimation increased the m (market potential parameter) estimate was 

systematically obtaining a higher value, and the q (WOM parameter) was obtaining a lower 

value. These findings are naturally important from forecasting perspective. However,  

Krishnan and Feng (2010) showed that inappropriate pooling of various data in the Van den 

Bulte and Lilien (1997) study might have led to their conclusion on the systematic bias. 

More research needs to be done in this area to figure out if the problem is for real, and, if 

yes, if the cause was estimation procedure or something else.  

 

3.4 MLE (Schmittlein and Mahajan, 1982):  

Noting that each adoption is an outcome of a binomial choice –adopt or not- at a given time 

for a given individual, they formulated a likelihood function from the Bass model and used 

MLE to estimate the model parameters from a given data set. Although many researchers 

prefer to use NLS over MLE mostly for simplicity, the discussion of which estimation 

procedure is better is still going on. For example, Hardie, Fader and Wisniewski (1998) found 

maximum likelihood to be noticeably better than NLS when applied to period-by-period 

sales. However, over shorter series, they found NLS applied to cumulative sales comparable 

with MLE. 

 

3.5 Augmented Kalman Filter with Continuous State variable and Discrete observations: 

AKF(C-D):  AKF(C-D) was borrowed from engineering and introduced by Xie, Song, SIrbu and 

Wang (1997) to offer another estimation procedure for the Bass model. Interestingly, this 

method uses the differential equation form of the Bass Model and not its closed-form 
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solution, although it is not clear if the superior performance would remain the same if one 

use AKF(C-D) on the latter form. AKF(C-D) acts on a closed-loop feedback mechanism, where 

each of the three parameters get updated by the difference between the predicted one-

step ahead forecast and the actual sales in the following period. At the start, each 

parameter is given a prior chosen judiciously inferred from the diffusion of previous 

analogous products or from meta-analytic studies like Sultan, Farley and Lehmann (1990). 

These are used on the Bass Model to forecast the first year’s sales, and the difference 

between this forecasted first year sales and the actual first year sales, the parameters get 

updated through an updating function. And the process gets repeated year by year until all 

the observations are used up. The authors show the superior performance of the AKF(C-D) 

by comparing it with OLS, NLS-on-SM and MLE. However, the authors use the accuracy of 

the one-step ahead forecast as the metric for this comparison, which is a little unfair 

because other estimation procedures use the “maximizing the overall fit of the model with 

the data” as their objective while AKF(C-D) uses exactly the one-step ahead forecast 

accuracy as its objective to update the parameters. Further, the AKF(C-D) procedure 

assumes observation error and parameter estimates’ errors, and it is not clear how far these 

assumptions affect the performance. Also, if a manager wants to do multi-period ahead 

forecasting, it might be difficult to employ this procedure because it’s basic premise is 

updating the next period performance. A comprehensive list of estimation procedures is 

presented in Table 2. 

 
Table 5 
Diffusion Models: Parameters Estimation Methods 
 

Estimation Methods Research Articles 

Ordinary Least Squares (OLS) Bass (1969) 
Bass (1980) 
Horsky and Simon (1983) 
Norton and Bass (1987) 
Simon and Sebastian (1987) 
Kamakura and Balasubramaniam (1988) 
Horsky (1990) 
Jones and Ritz (1991) 
Bass, Krishnan and Jain (1994) 

Maximum Likelihood Estimation (MLE) Schmittlein and Mahajan (1982) 
Hardie, Fader and Wisniewiski (1998) 
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Non-linear Least Squares (NLS) Srinivasan and Mason (1986) 
Jain and Rao (1990) 
Van den Bulte and Lilien (1997) 
Bass, Jain and Krishnan (2000) 

Hierarchical Bayes (HB) Lenk and Rao (1990) 

Augmented Kalman Filter (AKF) Xie, Song, Sirbu and Wang (1997) 

 

 

 4: Normative Implications of Diffusion Models 

Theoretical models like diffusion models will not be appreciated by practitioners unless they 

could be put to use to address some of the practical managerial issues. Diffusion models can 

be ideally used to address two such managerially relevant problems: forecasting and 

optimal marketing mix (pricing and advertising) policy decisions.  

 

4.1 Forecasting 

Frankly speaking, forecasting is as much an art as it is science. It is especially true with a new 

product where the consumer himself carries a lot of uncertainty with the product. Further, 

the sales growth of a new product very much depends on how the product manager 

employs the strategy in the marketplace, and a forecaster will not have access to those 

strategies. Having said that, managers would find it immensely useful if we could provide 

them with a fairly reliable tool to forecast the sales of a new product, stating therein the 

assumptions made. To that extent, let us now see how we can use the Bass model for the 

forecasting purposes. 

 

If a new product finds some traction in the marketplace, the product manager might like to 

know how the sales would grow over time so she could plan the production and distribution 

activities appropriately. Diffusion models perform their best in this forecasting exercise. 

Taking a simple approach, if we could somehow get the three main parameters of the Bass 

model, namely, {p, q, m}, for the given new product, we can easily draw out the annual sales 

of the product using expressions [4] and [6]. Where do we get these three parameters?  

 

Initially from some analogous products introduced earlier in the same marketplace to the 

same target segment, and later when some actual sales number of first few periods are 

collected, using those sales numbers one can getter better estimates for the three 
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parameters. One may wonder why the Bass model is the preferred model for forecasting? 

The answer to this question is rather straightforward. Recognizing that the Bass model is 

simple, theory-based, robust and is driven by only one independent variable, time, we can 

comfortably say that the Bass model is the best model to use for forecasting purposes. We 

may have other models like GBM that have successfully incorporated the influence of price 

and advertising, but if we want to use them for forecasting purposes, we have to necessarily 

predict how those additional variables, price and advertising, also would change over time. 

On the other hand, Bass model does not require them. Its parameters already reflect their 

impact implicitly. Secondly, the Bass model is a very robust model. Krishnan and Bass 

measured this robustness and compared that with robustness of other models. 

 

When the product shows clear signs of success after the first 3 or 4 periods, the manager 

would be interested to know when the sales growth would hit the peak. i.e. Peak-Sales Time 

(T*), as presented in equation (5). Knowing the T* for the given product can help a manager 

to (a) plan the production capacity and schedule, (b) know when to invest in the next new 

product and (c) decide on the right pricing and promotion strategies to face the competition 

that is likely to arise near the peak sales time. In other words, forecasting the T* using early 

years data might be the most important forecasting exercise for a product manager to 

undertake. Krishnan, Feng and Jain (2020) show how one could go about doing this forecast.  

 

4.2 Optimal Pricing 

Of all the marketing mix variables, perhaps the max attention is paid to ‘price’ because it is 

one element that directly and immediately affects the sales and, further, the impact can be 

measured. Starting with Robinson and Lakhani (1975), many optimal pricing paths have 

been advanced in the literature. These include the articles presented in Table 6.  

 
Table 6 
Diffusion Models: Normative Implications 
 

Marketing Mix Variable  Research Articles Normative Findings 

Price 
(Reference Price, Experience 
Curve) 

Robinson and Lakhani (1975) 
Bass (1980) 
Bass and Bultez (1982) 
Dolan and Jeuland (1981) 

Optimal Pricing Policy 
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Jeuland and Dolan (1982) 
Kalish (1983) 
Kalish (1985) 
Horsky (1990) 

Advertising  
(Cumulative Advertising) 

Dodson and Muller (1978) 
Horsky and Simon (1983) 
Simon and Sebastian (1987) 
Krishnan and Jain (2006) 

Optimal Advertising 
Policy  

Price and Advertising Kalish (1985) 
Krishnan, Jain and Bass 
(1999) 

Optimal Pricing and 
Advertising Policies 

 

As mentioned earlier, many of the earlier models were developed by including price variable 

into the Bass model in a plausible and logical way but without providing empirical support 

for the same. For example, the optimal policy derived from these models point to 

something interesting. They recommend that the price should increase as long as the sales 

keeps increasing and should start decreasing after the sales goes beyond the peak and 

decrease. In other words, they derive an optimal policy that mimics the sales pattern. It of 

course makes sense because the sales anyway keep increasing until the peak and hence it 

would seem prudent to increase the price that time. However, simple economic theory 

suggests that price increase or decrease should be a function of how sensitive the demand 

is to price changes. In terms of diffusion, it would mean that price change should depend on 

how effective the price is in affecting the rate of increase in the sales. Recognizing this, 

Krishnan, Bass and Jain (1997) used the GBM (1994) and derived the dynamic optimal 

pricing for a new product. Their results suggest that optimal price would increase initially (as 

others had suggested) but would start decreasing after some time, not necessarily after 

peak as others had suggested. The transition time could be even zero implying that the 

optimal price would decline monotonically right from the introduction time. When exactly 

the price would transit from increasing to declining trend is a function of sensitivity of 

demand to price and the future-discount rate.  

 

4.3. Optimal Advertising 

Compared to the optimal pricing literature, number of researchers worked on deriving 

optimal advertising is rather limited. There are only three distinct articles in principle: Teng  
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and Thomson (1983), Dockner and Jorgensen (1988) and Krishnan and Jain (2006)6. Of the 

three, the first two papers used the following extended Bass model for deriving their 

optimal advertising policies.  

 

 𝑆(𝑡) = [𝑝1 + 𝑞1 𝐹(𝑡) + {𝑝2 + 𝑞2𝐹(𝑡)}𝑓(𝑎)][𝑀 − 𝐶𝑆(𝑡)] (12) 

 

In equation [12], f(a) is a function of advertising which acts on one part of the diffusion force 

represented by innovation and imitation effect, and the rest of the parameters are basically 

the Bass model. If f(a) is zero, we get the Bass model. Teng and Thomson (1983) used a 

linear function for f(a) while Dockner and Jorgensen (1988) let it free and be a concave 

function. Depending upon the relative values of {p2, q2} with respect to {p1, q1}, the 

authors claim that optimal advertising policy is determined. 

 

Teng and Thomson (1983) results suggest that if advertising is more impactful on imitators 

optimal advertising should be minimum in the early and final periods and maximum in the 

middle periods i.e. Min-Max-Min optimal policy. Under the same condition of advertising 

more impactful on imitators, Dockner and Jorgensen (1988) results suggest a monotonically 

increasing advertising policy. If the advertising is more impactful on innovators, Dockner and 

Jorgensen (1988) suggest a monotonically declining advertising policy. A main shortcoming 

of these results is that the model [equation 10] used was not empirically tested and hence, 

as mentioned earlier, managers would find it difficult to follow them.  

 

Krishnan and Jain (2006) used the empirically proved GBM to derive their optimal 

advertising policy. Their results suggest a variety of paths for optimal advertising that 

depend on how effective is advertising on the diffusion, future discount rate and the ratio of 

advertising to sales ratio (A/S ratio). They show how different combinations of these three 

forces result in either increase-decrease or decrease-increase policies, where monotonically 

increasing is a special case of the increase-decrease policy and the monotonically declining 

policy is a special case of the decrease-increase policy. 

                                                        
6 Horsky and Simon (1983) is a special case of the Dockner and Jorgensen (1988) and hence is not considered 
separately. Similarly, Thomson and Teng (1984) has similar model and results as those of Teng and Thomson 
(1983) and hence is not considered separately. We will discuss these two papers later, however.  
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4.4. Joint Optimal Pricing and Advertising 

It is very challenging to derive jointly optimal price and optimal advertising policies. In 

Section 4.2 where we discussed optimal pricing policies, all of the results assume that 

advertising does not interfere with the price-to-sales impact directly, and probably 

advertising influence the price sensitivity. In Section 4.3 where we discussed optimal 

advertising policies, the researchers had assumed constant price or price declining at a 

constant rate. Haodong and Krishnan (2012) derived joint optimal pricing and advertising 

policies.  

 

5. Summary and Directions for Future Research 

The purpose of this article is to highlight the developments in the area of diffusion of 

innovations and its contributions to the new product marketing literature. Specifically, we 

focus on: 

• model formulations that capture the global diffusion dynamics 

• robust estimation procedures for empirical analysis 

• normative models that yield optimal marketing mix policies 

 

Moving forward, we would like to develop models that take into consideration 

a) The role social media plays in the marketplace: new product diffusion models need 

to incorporate word of mouse in addition to word of mouth that researchers have 

dealt with extensively in previous work. 

b) The market entry timing decisions for introducing successive generations: an area 

of strategic importance for firms because among other reasons, the introduction of a 

new generation has the potential to cannibalize the sales of current offerings, 

thereby affecting the firm’s total revenue model. (e.g., Apple’s iPhone, Samsung’s 

Galaxy) 

c) Market entry timing strategy for new products starting with quality variation: new 

version of better quality than previous version (e.g., high-definition TV vs. standard 

TV) or new version of poorer quality than previous one (e.g., hard cover textbooks 

first and paperback edition later)  
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d) Product lifecycles are getting shorter: Given the large investments in developing a 

new product, there might be financial risks associated with its premature or delayed 

introduction.  

e) New technological developments: Impact of artificial intelligence (AI), machine 

learning (ML), and internet of things (IoT) on new product diffusions.  

 

Successful launch and management of successive generations of technological products is 

important for firms to sustain its revenue stream and profitability as well as maintain a loyal 

customer base. Although, product lifecycles may be getting shorter due to rapid 

technological advancements, but customer lifecycles are becoming longer due to enhanced 

longevity resulting from health science research and advanced medical innovations. 

Enriching total customer experience requires firms to focus on R&D for new products and 

have a proper plan for entry timing for successive product generations. Successful launch of 

successive product generations also effects product branding as well as corporate branding 

in achieving a favorable, innovative image in the marketplace. 

 

 


